Neural correlates of real-world route learning

Schinazi, V.R. & Epstein, R.A. (2010). Neural correlates of real-world route learning. NeuroImage, 53, 725-735.

Schinazi, V.R. & Epstein, R.A. (2010). Neural correlates of real-world route learning. NeuroImage, 53, 725-735.

Classical theories of spatial microgenesis (Siegel and White, 1975) posit that information about landmarks and the paths between them is acquired prior to the establishment of more holistic survey-level representations. To test this idea, we examined the neural and behavioral correlates of landmark and path encoding during a real-world route learning episode. Subjects were taught a novel 3 km route around the University of Pennsylvania campus and then brought to the laboratory where they performed a recognition task that required them to discriminate between on-route and off-route buildings. Each building was preceded by a masked prime, which could either be the building that immediately preceded the target building along the route or immediately succeeded it. Consistent with previous reports using a similar paradigm in a virtual environment (Janzen and Weststeijn, 2007), buildings at navigational decision points (DPs) were more easily recognized than non-DP buildings and recognition was facilitated by in-route vs. against-route primes. Functional magnetic resonance imaging (fMRI) data collected during the recognition task revealed two effects of interest: first, greater response to DP vs. non-DP buildings in a wide network of brain regions previously implicated in spatial processing; second, a significant interaction between building location (DP vs. non-DP) and route direction (in-route vs. against-route) in a retrosplenial/parietal-occipital sulcus region previously labeled the retrosplenial complex (RSC). These results indicate that newly learned real-world routes are coded in terms of paths between decision points and suggest that the RSC may be a critical locus for integrating landmark and path information.

Download PDF